Reaction of Amidine Phenylogous with p-Benzoquinones

Ahmed M. Nour EL-DIN,* Aboul-Fetouh E. MOURAD, Alaa A. HASSAN, and Mohsen A. Gomaa Department of Chemistry, Faculty of Science, El-Minia University, El-Minia, A.R. Egypt (Received October 20, 1990)

N-(4-Dimethylaminobenzylidene)anilines and N¹-(4-dimethylaminophenyl)-N¹, N²-diphenylformamidine reacted with tetrachloro-, tetrabromo,- and tetrafluoro-p-benzoquinones via charge-transfer complexes formation giving 2-monoarylamino-3,5,6-trihalo-p-benzoquinones and 2,5-bis(arylamino)-3,6-dihalo-p-benzoquinones. The course of the reaction leading to the formation of the products has been interpreted.

Recently, we have shown that azomethines,¹⁾ azomethine N-oxides²⁾ (nitrones), as well as heteroaromatic N-oxides³⁾ form charge-transfer complexes (CTC) with different electron-deficient π -systems as p-benzoquinones, tetracyanoethylene, and tetracyanoquinodimethane.

In the previous work¹⁾ concerning the study of the CTC of aryl substituted azomethines with electron-poor *p*-benzoquinones, tetrachloro-*p*-benzoquinone (chloranil, CHL), tetrabromo-*p*-benzoquinone (bromanil, BRL), and 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (DDQ), we found that, the presence of dimethylamino group on the benzylidene ring increases the donor ability of the azomethine compound enough for immediate reaction with the *p*-benzoquinones. This behavior

prompted us to study the chemical interaction between different N-(4-dimethylaminobenzylidene) anilines (1a—i) (Fig. 1), and the electron-deficient p-benzo-quinones CHL, BRL and tetrafluoro-p-benzoquinone (fluoranil, FRL).

On addition of equimolar amounts of p-benzo-quinones CHL, BRL, and FRL to azomethines (1a—i) in ethyl acetate, with admission of air at room temperature, a green color of the transient CTC was observed, which immediately changed to brown color and a solid product precipitated. When the reaction was followed spectrophotometrically, absorption maxima were observed in the range 620—728 nm, and were assigned to the CTC, since both the azomethines (1a—i) and the

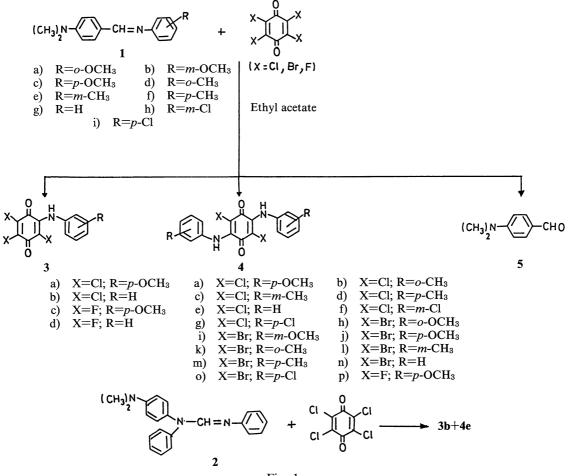


Fig. 1.

p-benzoquinones alone did not absorb in this region⁴⁾ (Table 1). The chromatographic separation of the reaction mixtures yielded the 2-arylamino-3,5,6-trihalo-p-benzoquinones (3a—d) as minor products (10—16%), the 2,5-bis(arylamino)-3,6-dihalo-p-benzoquinones (4a—p) (41—61%) as major products,⁵⁾ and 4-dimethylamino-benzaldehyde (5) (Fig. 1).

However, the reactions of other azomethines, which bear methoxy or methyl substituents instead of a dimethylamino group on the benzylidene ring led to the formation of relatively stable CTC and did not give the expected mono- and/or di-arylaminohalo-p-benzoquinone products. This result indicates that the presence of dimethylamino group on the benzylidene ring plays an important role in this reaction and is essential for the azomethine 1a—i to be capable of undergoing this chemical reaction. On the other hand, the structures of the products 3a-d and 4a-p show that the active center of the azomethines 1a-i is the nitrogen atom of the imino group. Thus, it may be assumed that the presence of the good electron-donating dimethylamino group in para position on the benzylidene ring, and consequently in conjugation with it, makes Schiff's bases (1a—i) to behave like amidines⁶⁾ (>N-CH=N-) or phenylogous amidines. This assumption could be rationalized through the formation of both the 2arylamino- (3b) and the 2,5-bis-arylamino- (4e) derivatives (Fig. 1) from the reaction of the amidine 2 with chloranil under the same conditions.

Table 1. Absorption (λ_{max}) of the Charge-Transfer Complexes of p-Benzoquinones with Various Donors in Dichloromethane at Room Temperature (25 °C)

Donor	Acceptor	λ_{max}/nm	Donor	Acceptor	λ_{max}/nm
1a	CHL	670	1a	BRL	710
1b	CHL	695	1b	BRL	714
1c	CHL	711	1c	BRL	728
1d	CHL	695	1d	BRL	717
1e	CHL	693	1e	BRL	710
1f	CHL	705	1f	BRL	721
1g	CHL	690	1g	BRL	707
1ĥ	CHL	686	1ĥ	BRL	700
1i	CHL	688	1i	BRL	705
1a	FLR	648(sh)	1b	FLR	632
1c	FLR	650	1d	FLR	641(sh)
1e	FLR	628	1f	FLR	640
1g	FLR	625	1i	FLR	620
2	CHL	586			

These findings can be interpreted according to Fig. 2. The mixing of the electron-deficient p-benzoquinones CHL, BRL, or FRL with each of the donors 1a-i would lead initially to the formation of CTC 6, which exists in equilibrium with the two reactants: Then the activation of the nitrogen atom of the imino group through the electron-pair of the dimethylamino group enables their nucleophilic attack on the p-benzoquinone forming 7, which gives the salt 8. The addition of H₂O molecule to the intermediate 8 followed by dehydrohalogenation, deprotonation on oxygen and protonation on the arylated nitrogen affords the 2arylamino-p-benzoquinones (3) and 4-dimethylaminobenzaldehyde (5). Hydrolysis of the Schiff's base (which should generate the aldehyde and the free amine Ar-NH₂, which in turn would attack the quinone) prior to reaction with the quinone is considered unlikely, because there is no change in the Schiff's base under the similar conditions where a p-benzoquinone is absent. On the other hand, the salt 8 may be attacked by moisture faster than the free Schiff's base. The reaction of 3 with another molecule of amidine phenylogous 1 should lead to the formation of the major product 4 (Fig. 2). Proofs of the structures of the products were based firmly on elemental analysis, UV, IR, ¹H NMR, and the mass spectra, chemical reactions, or comparison with authentic samples (Tables 1—4).

Experimental

Melting points are uncorrected. UV-vis spectra were measured on a Perkin-Elmer Lambda 2 spectrophotometer using 1.0 cm stoppered silica cells. IR spectra were measured on a Shimadzu 408 spectrophotometer (KBr). The ¹H NMR spectra were recorded on Bruker Wp 80 (80 MHz), and the chemical shifts were expressed as δ (ppm) with TMS as the internal standard. The MS spectra were recorded on Finnigan MAT 8430 spectrometer at 70 eV. Elemental analyses were performed by microanalytical unit at Duisburg University, FRG, using Carlo ERBA strumentazione elemental analyzer Model 1106.

Table 2	Analytical and	Physical Data of 3	Rodond 4a n
Table 2.	Anaivucai and	Privilcal Data of .	5a—a and 4a—b

Yield		Mp	Lit ^{a)}	Color of	Solvent	Molecular	Analysis % found (calcd)		
Compd	%	°C	mp	crystal	of recryst	formula (M. Wt)	С	Н	N
3a	12	188—189		Blue	A	C ₁₃ H ₈ Cl ₃ NO ₃ (332.569)	46.83 (46.95)	2.31 (2.42)	4.29 (4.20)
3b	16	>300	_	Blue	A	$C_{12}H_6Cl_3NO_2$ (302.526)	47.58 (47.63)	2.01 (1.99)	4.67 (4.63)
3c	14	140—142	_	Blue	A	$C_{13}H_8F_3NO_3$ (283.200)	55.51 (55.14)	2.87 (2.84)	4.87 (4.95)
3d	10	119—121		Brown		$C_{12}H_6F_2NO_2$ (253.146)	56.97 (56.93)	2.41 (2.39)	5.49 (5.53)
4a	44	295—296	298	Black	В	——————————————————————————————————————	— —		— —
4b	48	275—277		Brown	В	$C_{20}H_{16}Cl_2N_2O_2$ (387.264)	61.94 (62.00)	4.21 (4.15)	7.19 (7.25)
4c	46	285d	_	Black	В	C ₂₀ H ₁₆ Cl ₂ N ₂ O ₂ (387.264)	62.07 (62.00)	4.19 (4.15)	7.31 (7.25)
4d	53	306d	310d	Black	C		_ _		_ _
4e	51	314—316	315d	Brown	C		_	_	_
4f	41	305—306		Brown	В	$C_{18}H_{10}Cl_4N_2O_2$ (427.100)	50.41 (50.45)	2.39 (2.35)	6.49 (6.55)
4g	43	>330	350	Black	В	<u></u>			
4h	54	240	_	Deep green	В	$C_{20}H_{16}Br_2N_2O_4$ (508.148)	46.99 (47.25)	3.14 (3.15)	5.48 (5.50)
4i	49	206—208	and the same of th	Brown	В	$C_{20}H_{16}Br_2N_2O_4$ (508.148)	47.23 (47.25)	3.12 (3.15)	5.52 (5.50)
4j	57	263d	267	Black	В		` _ ´		
4k	51	220—221		Reddish brown	В	$C_{20}H_{16}Br_2N_2O_2$ (476.148)	50.28 (50.40)	3.31 (3.35)	5.93 (6.00)
41	55	221—222		Brown	В	$C_{20}H_{16}Br_2N_2O_2$ (476.148)	50.41 (50.43)	3.42 (3.35)	5.84 (6.00)
4m	59	358d	360	Brown	_	<u></u>		`	
4n	48	283—284	285	Brown	В	_			_
40	41	318	320	Black	В	_		_	
4p	61	272—273		Reddish brown	В	$\begin{array}{c} C_{20}H_{16}F_2N_2O_4\\ (386.360)\end{array}$	62.25 (62.18)	4.06 (4.17)	7.16 (7.25)

A=Cyclohexane B=Acetone

Table 3. IR and ¹H NMR Spectra of the 2-Arylamino-3,5,6-trihalo-p-benzoquinone **3a—d** and 2,5-Bis(arylamino)-3,6-dihalo-p-benzoquinone **4a—p**

Compound	IR (KBr, cm ⁻¹)	1 H NMR $^{a)}$ (δ , TMS)
3a	3250 (NH), 2900 (aliph. CH), 1690 (CO), 3010, 1605	
	(Ar-CH), 1585 (Ar-C=C).	
3b	3220 (NH), 1680 (CO), 1605 (Ar-CH), 1580 (Ar-C=C).	6.95—7.60 (m, 5H) Ar-H, 9.25 (br. s, 1H) NH.
3c	3360 (NH), 2885 (aliph. CH), 1680 (CO), 1620 (Ar-	
	CH), 1500—1530 (Ar-C=C).	
3 d	3310 (NH), 1695 (CO), 1610 (Ar-CH), 1525 (Ar-C=C).	6.80—7.60 (m, 5H) Ar-H, 9.20 (br. s, 1H) NH.
4a	3210 (NH), 2900 (aliph. CH), 1645 (CO), 1605 (Ar-	
	CH), 1560—1580 (Ar-C=C).	
4b	3210 (NH), 1650 (CO), 3010, 1610 (Ar-CH), 1560-	2.20 (s, 6H) CH ₃ , 7.10—7.30 (m, 8H) Ar-H, 9.30
	1570 (Ar-C=C).	(br. s, 2H) NH.
4c	3210 (NH), 2900 (aliph. CH), 1645 (CO), 3010 (Ar-	2.31 (s, 6H) CH ₃ , 6.99—7.22 (m, 8H) Ar-H, 9.25
	CH), 1560 (Ar-C=C).	(br. s, 2H) NH.

C=Ethyl acetate

The percentage of yield of the aldehyde $(CH_3)_2N-C_6H_4CHO$ is 20%. a) Refs. 5 and 12.

Table 3. (Continued)

Compound	IR (KBr, cm ⁻¹)	1 H NMR $^{a)}$ (δ , TMS)
4d	3250 (NH), 1645 (CO), 3010, 1610 (Ar-CH), 1560	2.28 (s, 6H) CH ₃ , 7.00—7.20 (m, 8H) Ar–H, 9.58
	(Ar-C=C).	(br. s, 2H) NH.
4 e	3240 (NH), 1645 (CO), 1600 (Ar-CH), 1575 (Ar-C=C).	7.14—7.40 (m, 10H) Ar-H, 9.78 (br. s, 2H) NH.
4f	3250 (NH), 1650 (CO), 1605 (Ar-CH), 1560 (Ar-C=C).	7.05—7.45 (m, 8H) Ar-H, 9.45 (br. s, 2H) NH.
4g	3250 (NH), 1645 (CO), 1610 (Ar-CH), 1560 (Ar-C=C).	7.00—7.10 (m, 8H) Ar-H, 9.25 (br. s, 2H) NH.
4h	3240 (NH), 1645 (CO), 1600 (Ar-CH), 1555 (Ar-C=C).	3.85 (s, 6H) OCH ₃ , 6.85—7.35 (m, 8H) Ar-H, 8.35
		(br. s, 2H) NH.
4i	3250 (NH), 1645 (CO), 1610 (Ar-CH), 1570 (Ar-C=C).	3.78 (s, 6H) OCH ₃ , 6.70—7.35 (m, 8H) Ar-H, 9.40
		(br. s, 2H) NH.
4 j	3240 (NH), 1640 (CO), 1600 (Ar-CH), 1560 (Ar-C=C).	3.82 (s, 6H) OCH ₃ , 6.80—7.35 (m, 8H) Ar-H, 8.40
-		(br. s, 2H) NH.
4k	3210 (NH), 1655 (CO), 1610 (Ar-CH), 1585 (Ar-C=C).	2.30 (s, 6H) CH ₃ , 6.95—7.30 (m, 8H) Ar-H, 8.30
		(br. s, 2H) NH.
41	3240 (NH), 1645 (CO), 1600 (Ar-CH), 1560 (Ar-C=C).	2.35 (s, 6H) CH ₃ , 6.90—7.30 (m, 8H) Ar-H, 8.35
		(br. s, 2H) NH.
4m	3250 (NH), 1645 (CO), 1610 (Ar-CH), 1565 (Ar-C=C).	2.35 (s, 6H) CH ₃ . 6.95—7.30 (m, 8H) Ar-H, 8.35
		(br. s, 2H) NH.
4n	3250 (NH), 1645 (CO), 3010, 1600 (Ar-CH), 1565	7.10—7.40 (m, 10H) Ar-H, 8.50 (br. s, 2H) NH.
	(Ar-C=C).	
40	3200 (NH), 1640 (CO), 1600 (Ar-CH), 1555 (Ar-C=C).	7.10—7.45 (m, 8H) Ar-H, 9.25 (br. s, 2H) NH.
4p	3250 (NH), 1665 (CO), 1610 (Ar-cH), 1585 (Ar-C=C).	3.77 (s, 6H) OCH ₃ , 6.80—7.20 (m, 8H) Ar–H, 8.75 (br. s, 2H) NH.

a) The solvent of ¹H NMR is DMSO-d₆ except 3b and 3d (CDCl₃).

Table 4. Mass Spectroscopy of 2-Arylamino-3,5,6-trihalo-p-benzoquinone 3a—d and 2,5-Bis(arylamino)-3,6-dihalo-p-benzoquinone 4a—f, n—p

•	y,0-dinaio-p-ochizoquinone 4a 1, n-p
Compound	MS m/z (rel intensity %)
3a	332½ (M ⁺ , 100), 297 (73), 281 (17), 175 (50), 92 (26), 77 (30), 65 (50), 51 (22).
3b	302½ (M ⁺ , 33), 267 (29), 175 (18), 77 (100), 51 (90).
3c	283 (M ⁺ , 100), 268 (84), 248 (5), 212 (7), 192 (8), 92 (16), 77 (9), 65 (31).
3d	253 (M ⁺ , 100), 206 (24), 108 (32), 77 (61), 51 (56).
4a	419 (M+, 100), 403 (3), 383 (24), 367 (13), 348 (16), 347 (51), 331 (4), 174 (80), 123 (10), 77 (32), 65 (19).
4b	387 (M ⁺ , 100), 351½ (64), 316 (39), 286 (13), 246 (12), 158 (41), 91 (64), 77 (24), 65 (52), 44 (18).
4 c	387 (M ⁺ , 58), 371 (8), 351½ (46), 315 (41), 91 (100), 77 (21), 65 (71).
4d	387 (M ⁺ , 100), 371 (16), 351½ (47), 336 (12), 315 (49), 91 (100), 77 (25), 65 (70).
4e	359 (M ⁺ , 90), 323 (77), 287 (38), 77 (100).
4f	427 (M+, 10), 391½ (54), 356 (26), 320½ (4), 178 (100).
4n	448 (M ⁺ , 46), 368 (24), 340 (18), 288 (22), 77 (100), 51 (40).
40	516 (M ⁺ , 37), 436 (17), 402 (14), 356 (7), 321 (16),

Preparative Layer Chromatography. Air dry 1.0 mm layers of silica gel Merck pf 254 on plates were employed for preparative TLC and bands were detected by indicator fluorescence quenching upon exposure to 254 mm UV-light.

(7), 264 (5), 107 (4), 77 (10), 65 (9).

386 (M⁺, 100), 368 (10), 355 (69), 348 (41), 324

223 (34), 178 (100).

Compounds: 2,3,5,6-Tetrachloro-p-benzoquinone (chloranil, CHL, Aldrich) and 2,3,5,6-tetrabromo-p-benzoquinone (bromanil, BRL, Merck) were recrystallized several times from

benzene before use. 2,3,5,6-Tetrafluoro-p-benzoquinone (Fluoranil, FRL, Aldrich) was used without purification. Azomethines **1a—i** were prepared by the usual condensation reaction of 4-dimethylaminobenzaldehyde with substituted aromatic amines. The amidine **2** was prepared according to the literature. Ethyl acetate used as a solvent, was purified according to Vogel¹⁰⁾ and Organikum, dried and distilled.

The Reaction of p-Benzoquinones, (BRL, CHL, FRL) with Azomethines 1a—i and Amidine[#] 2. General Procedure: To a solution of tetrahalo-p-benzoquinone (0.001 mol) in 20 ml dry ethyl acetate, the azomethine (0.001 mol) which was dissolved in 10 ml dry ethyl acetate was added dropwise with stirring at room temperature. The reaction mixture became deep green which turned immediately into brown color. The stirring was continued for 48 h with admission of air to complete the reaction.

The reaction mixture was filtered and the precipitate was washed several times with cold ethyl acetate until the mother liquor became clear. The filtrate was concentrated and the residue was chromatographed on thin-layer plates using toluene as eluent to give two zones; the first contained compound 3 which is characterized by a deep blue color, and the second the 4-dimethylaminobenzaldehyde.

The two zones were extracted with acetone and the products recrystallized from the suitable solvent to afford the pure compounds (see Table 2).

The precipitate was recrystallized from acetone to give a pure compounds of 2,5-bis(arylamino)-3,6-dihalo-p-benzo-quinone 4.

We thank DAAD (F.R.G) for the financial support of this work. Thanks are also due to Professor Dr. D. Döpp, Fachbereich Organische Chemie, Duisburg Uni-

[#] In the case of reaction with amidine 2, the corresponding aldehyde could not be isolated in apure form.

versität, F.R.G, for providing laboratory facilities and for valuable discussions.

References

- 1) A. M. Nour El-Din, Z. Phys. Chem. (Leipzig), 267, 980 (1986).
- 2) A. M. Nour El-Din and D. Döpp, *Bull. Soc. Chim. Belg.*, **93**, 891 (1984).
- 3) A. M. Nour El-Din, Spectrochim. Acta, Part A, 41, 1101 (1985).
- 4) R. Foster, "Organic Charge Transfer Complexes," Academic Press, London (1969).

- 5) H. Hishi, Y. Hatada, and K. Kitahara, Bull. Chem. Soc. Jpn., 56, 1482 (1983).
- 6) S. Patai, "The Chemistry of Amidines and Imidates," John Wiley & Sons, London (1975).
- 7) A. Roe and J. A. Montgomery, J. Am. Chem. Soc., 75, 910 (1952).
 - 8) H. Gilman, Org. Synth., Coll. Vol. I, 80 (1956).
 - 9) A. M. Nour El-Din, J. Chem. Res. (M), 79, 3019 (1984).
- 10) A. I. Vogel, "A Textbook of Practical Organic Chemistry," 3rd ed, Longman, London (1957).
- 11) H. Becker et al., "Organikum," Deut. Verl. Wiss., Berlin (1973).
- 12) R. L. Mital and S. K. Jain, J. Chem. Soc. C, 1971, 1875.